Topologically protected edge and confined states in finite armchair graphene nanoribbons and their junctions
نویسندگان
چکیده
Topologically protected edge and junction states, previously predicted, have recently been observed in armchair graphene nanoribbon (AGNR) heterojunctions. Here, via tight-binding-based calculations, we explain the relation between nature number of zero-mode states finite-length AGNRs their structure, topological invariants, winding number. This allows us to rationalize design AGNR heterojunctions superlattices with tailored phases. We show how choice widths, interface coupling geometry, boundaries determines emergence following patterns that depend on structure family constituent AGNRs. Furthermore, prove quantum-well-like confined one ribbons develop all junctions irrespective trivial or character. The bipartite honeycomb lattice is determinant for properties junctions: electronic can be topologically nontrivial depending subtle differences at ribbons.
منابع مشابه
Stability of edge states and edge magnetism in graphene nanoribbons
Jens Kunstmann,1,* Cem Özdoğan,2 Alexander Quandt,3,4 and Holger Fehske3 1Institute for Materials Science, TU Dresden, Hallwachstr. 3, D-01069 Dresden, Germany 2Department of Materials Science and Engineering, Çankaya University, Balgat, TR-06530 Ankara, Turkey 3Institut für Physik der Universität Greifswald, Felix–Hausdorff-Str. 6, D-17489 Greifswald, Germany 4School of Physics and DST/NRF Cen...
متن کاملTransport properties of two finite armchair graphene nanoribbons
: In this work, we present a theoretical study of the transport properties of two finite and parallel armchair graphene nanoribbons connected to two semi-infinite leads of the same material. Using a single Π-band tight binding Hamiltonian and based on Green's function formalisms within a real space renormalization techniques, we have calculated the density of states and the conductance of these...
متن کاملSpin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملFlat-band ferromagnetism in armchair graphene nanoribbons
We study the electronic correlation effects in armchair graphene nanoribbons that have been recently proposed to be the building blocks of spin qubits. The armchair edges give rise to peculiar quantum interferences and lead to quenched kinetic energy of the itinerant carriers at appropriate doping level. This is a beautiful one-dimensional analogy of the Landaulevel formation in two dimensions ...
متن کاملUltra-narrow metallic armchair graphene nanoribbons
Graphene nanoribbons (GNRs)-narrow stripes of graphene-have emerged as promising building blocks for nanoelectronic devices. Recent advances in bottom-up synthesis have allowed production of atomically well-defined armchair GNRs with different widths and doping. While all experimentally studied GNRs have exhibited wide bandgaps, theory predicts that every third armchair GNR (widths of N=3m+2, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2021
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physrevb.104.245402